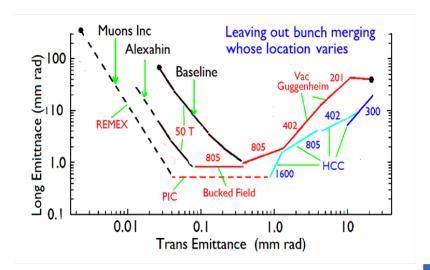
6D Cooling Simulations for the Muon Collider

Pavel Snopok University of California Riverside

Guggenheim Workshop @ Fermilab



- Muon Collider vs. Neutrino Factory cooling needs
- Muon Cooling scheme for the Muon Collider
- 6D cooling and emittance exchange
- Cooling lattices
- ST in magnetic field
- Open cavity lattice simulations
- Summary

Muon Collider cooling needs

- Neutrino Factory:
 - Might be feasible with no cooling.
 - Some transverse cooling is cost-effective.
 - Virtually no longitudinal cooling.
 - Overall 6D emittance reduction of approximately one order in magnitude.
- Muon Collider:
 - Strong fully 6D cooling.
 - 6D emittance reduction factor of 10⁶.
 - Proposed cooling schemes—next slide.

Muon Collider cooling scheme

6D cooling and emittance exchange

Combining Cooling and Heating:

$$\frac{d\epsilon_{N}}{ds} = -\frac{1}{\beta^{2}E}\frac{dE}{ds}\epsilon_{N} + \frac{\beta\gamma\beta_{\perp}}{2}\frac{d\left\langle\theta_{rms}^{2}\right\rangle}{ds}$$

- Low-Z absorbers (Low-Z abso
- High Gradient RF
 - To cool before μ-decay (2.2γ μs)
 - To keep beam bunched
- Strong-Focusing at absorbers
 - To keep multiple scattering
 - less than beam divergence ...

- \Rightarrow Li lens focusing ?
- \Rightarrow Solenoid focusing?

Emittance Exchange

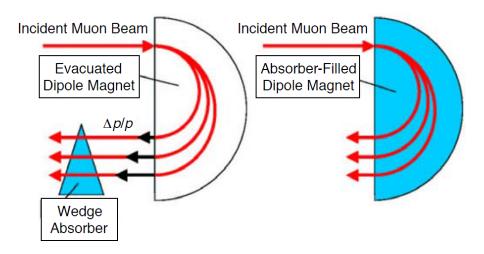
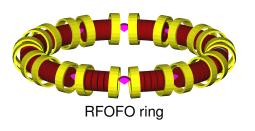
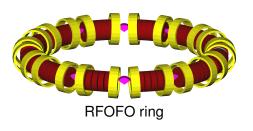
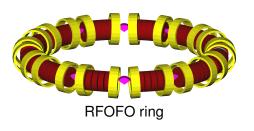



Image courtesy of Muons, Inc.

Cooling lattices

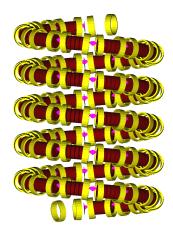
Various cooling proposals


- RFOFO ring / Guggenheim helix
- modification: Open cavity lattice
- Helical cooling channel (Muons, Inc.)
- FOFO Snake (Y. Alexahin)
- Quadrupole and dipole rings

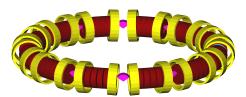

- Yellow: tilted magnetic coils generating required bending and dispersion.
- Purple: wedge absorbers for cooling and emittance exchange.
- Red/Brown: RF cavities to restore energy lost in the absorber (longitudinal direction only).

- Yellow: tilted magnetic coils generating required bending and dispersion.
- Purple: wedge absorbers for

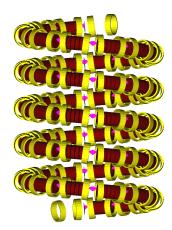
- Yellow: tilted magnetic coils generating required bending and dispersion.
- Purple: wedge absorbers for cooling and emittance exchange.
- Red/Brown: RF cavities to restore energy lost in the absorber (longitudinal direction only).


- Yellow: tilted magnetic coils generating required bending and dispersion.
- Purple: wedge absorbers for cooling and emittance exchange.
- Red/Brown: RF cavities to restore energy lost in the absorber (longitudinal direction only).

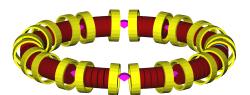
RFOFO ring and Guggenheim helix


RFOFO ring

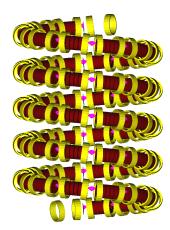
- Advantages: fast cooling, compact design, RF reuse
 - Challenges: absorber overheating, injection/extraction, continuous operation.


RFOFO-based Guggenheim helix

RFOFO ring and Guggenheim helix


RFOFO ring

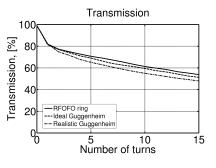
- Advantages: fast cooling, compact design, RF reuse.
 - Challenges: absorber overheating, injection/extraction, continuous operation.



RFOFO-based Guggenheim helix

RFOFO ring and Guggenheim helix

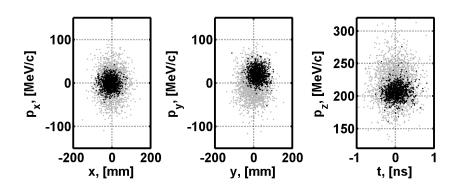
- Advantages: fast cooling, compact design, RF reuse.
 - Challenges: absorber overheating, injection/extraction, continuous operation.




RFOFO-based Guggenheim helix

Parameter comparison

	RFOFO	Guggenheim
Circumference, [m]	33.00	33.00
RF frequency, [MHz]	201.25	201.25
RF gradient, [MV/m]	12.835	12.621
Maximum axial field, [T]	2.77	2.80
Pitch, [m]	0.00	3.00
Pitch angle, [deg]	0.00	5.22
Radius, [mm]	5252.113	5230.365
Coil tilt (wrt orbit), [deg]	3.04	3.04
Average momentum, [MeV/c]	220	220
Reference momentum, [MeV/c]	201	201
Absorber angle, [deg]	110	110
Absorber thickness on beam axis, [cm]	27.13	27.13


Performance studies

- 6D emittance is reduced by a factor of 448 in the RFOFO ring or a factor of 360 in the Guggenheim helix (495 m) with no windows
- or by a factor of 60 with windows in the RF cavities and absorbers

Phase space reduction

Solenoidal lattices

All the solenoidal cooling lattices

- helical cooling channel,
- FOFO snake,
- RFOFO ring and Guggenheim helix

have one important thing in common:

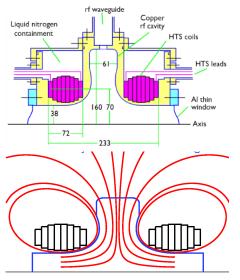
- they use solenoids to focus and bend particles, generate dispersion;
- RF cavities operate in the strong magnetic field.

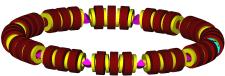
Solenoidal lattices

All the solenoidal cooling lattices

- helical cooling channel,
- FOFO snake,
- RFOFO ring and Guggenheim helix

have one important thing in common:


- they use solenoids to focus and bend particles, generate dispersion;
- RF cavities operate in the strong magnetic field.


Experimental results

Open cavity lattice

Magnetic insulation

- Open cavity lattice
- Coils in the irises
- Coils are tilted to generate bending field

Open cavity and RFOFO parameters compared

Parameter	Unit	Open cavity	RFOFO
Number of cells		12	12
Circumference	[m]	30.72	33.00
Radius	[m]	4.889	5.252
RF frequency	[MHz]	201.25	201.25
RF gradient	[MV/m]	16.075	12.835
Maximum axial field	[T]	3.23	2.80
Reference momentum	[MeV/c]	214	201
Coil tilt	[deg]	4.90	3.04
Number of coils per cell		4	2
Current densities	[A/mm ²]	[63,45,-45,-63]	[95,-95]
Number of RF cavities		3	6
Length of each RF cavity	[mm]	385	282.5
Absorber angle	[deg]	90	110
Absorber vertical offset	[cm]	12.0	9.5
Absorber axial length	[cm]	24.00	27.13

Table: Parameters of the open cavity ring and the RFOFO ring.

Magnetic field profiles

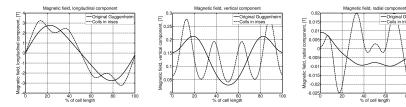
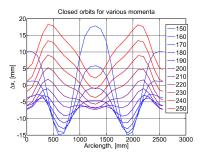



Figure: Longitudinal, vertical and radial components of the magnetic field. Solid line—original RFOFO ring (or Guggenheim helix), dashed line—open cavity lattice.

Original Guggenheim

Closed orbits

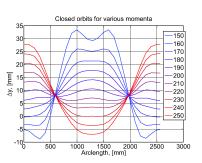


Figure: Closed orbit horizontal and vertical offsets along one cell of the cooling channel (2560 mm) for various momenta from 150 MeV/c to 250 MeV/c.

Tracking results

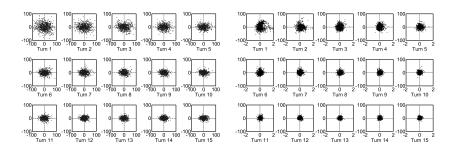


Figure: Phase portraits in the $(x-p_x)$ (left) and $(t-p_z)$ (right) planes, decay and stochastic processes on. The beam emittance is reduced until the equivilibrium emittance is reached.

Performance comparison: RFOFO vs. open cavity

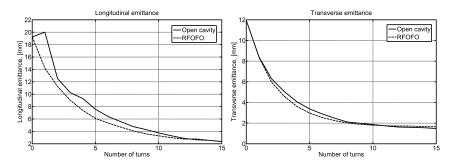


Figure: Performance of the open cavity lattice *vs.* the RFOFO lattice with decay and stochastic processes. Solid line—open cavity lattice, dashed line—RFOFO lattice.

Performance comparison: RFOFO vs. open cavity

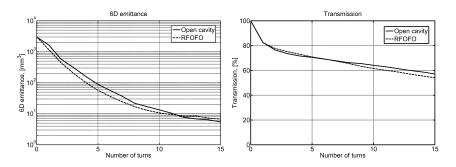


Figure: Performance of the open cavity lattice *vs.* the RFOFO lattice with decay and stochastic processes. Solid line—open cavity lattice, dashed line—RFOFO lattice.

Quantitative analysis of open cavity lattice vs. RFOFO

Structure	$arepsilon_{\perp}$	$\mid \; arepsilon_{\parallel} \;$	$arepsilon_{6D}$	Transmission
	[mm]	[mm]	[mm ³]	[%]
Initial	12	19	3000	100
Open cavity	1.5	2.3	5.5	57
(15 turns) RFOFO	1.7	2.5	7.2	56
(14 turns) RFOFO (15 turns)	1.6	2.4	6.7	54

Table: Parameters of the open cavity ring compared to the RFOFO ring.

Summary

- MC and NF cooling needs are summarized.
- RFOFO and Guggenheim study results are presented.
- Open cavity lattice simulation results are summarized and compared to the RFOFO lattice.

P.S. I have some extra slides comparing tracking of the open cavity ring with and without decay/stochastic processes on.

Extra slides

Decay/stochastics on and off

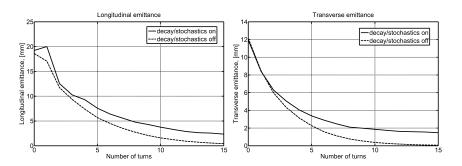


Figure: Performance of the open cavity lattice with decay and stochastic processes. Solid line—decay/stochastics on, dashed line—decay/stochastics off.

• There is no equilibrium emittance when stochastic processes are off, both transverse and longitudinal emittances shrink to zero

Decay/stochastics on and off

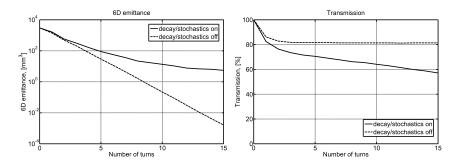


Figure: Performance of the open cavity lattice with decay and stochastic processes. Solid line—decay/stochastics on, dashed line—decay/stochastics off.

- With no stochastics the 6D emittance shrinks exponentially.
- With no decay the transmission stabilizes after 3 turns at 81%.